Cabo dvi

Cabo dvi DEFAULT

DIGITUS Cabo adaptador DisplayPort Topseller

DisplayPort adapter cable, DP - DVI (24+5) M/F, 0.15m,w/interlock, DP 1.1a, bl, CE

Imagem clara e nítida–resoluçãoFull HD

  • Imagem clara e nítida–resoluçãoFull HD
  • Ligação segura e estável

Este cabo HD digital, é adequado, por exemplo, para a ligação de um computador portátil ou de um computador pessoal com uma interface DP a um monitor DVI, projector, monitor LCD-TFT através de um cabo DVI.

Technical Details

  • Full HD, ligação dupla
  • Interlock: Snap fastener
  • Connector surface: nickel-plated
  • Color cable: black
  • Color connector: black
  • Hoods: molded
  • Connector 1: DP, plug
  • Connector 2: DVI-I, (24+5), jack
  • DisplayPort standard: DisplayPort 1.1a
  • Ferrite filter: none
  • Assortment: DisplayPort Cables
  • AOC - Active Optical Cable: no
  • HDTV Standard: Full HD
  • Length: 0.15 m
Sours: https://www.assmann.com/

Mini DisplayPort DP para conversor de adaptador de cabo DVI-D 1m Features: 1.High compatibility:Connect a Mini DisplayPort (Mini DP or mDP)/Thunderbolt(TM) 2 port compatible computer desktop laptop tablet such as Macbook Pro / Surface Pro 4 to a monitor or projector with DVI input. 2.HD quality:Transmits video from computer or tablet to HD monitor display, 1080P gaming monitor; Supports 1080P full HD resolution. 3.Durable:Low-profile connector won't block adjacent ports on your computer, has molded strain-relief for long life, and has ergonomically designed treads for easy plugging and unplugging. Description: 1.Gold-plated connectors resist corrosion, provide durability, and improve the signal transmission; Foil & braid shielding reduces Electromagnetic interference; Bare copper conductor enhances cable performance. 2.Supports resolutions including 1920x1200, 1080P, 1080i, 720p and etc. Specifications: Color:Black Material: ABS Cable Length: 6 ft Size:1 m, 1.8 m,3 m(optional) Model:Mini DP to DVI-D Cable Package Included: 1 * Cable adapter Notes: 1. Due to the difference between different monitors, the picture may not reflect the actual color of the item. We guarantee the style is the same as shown in the pictures. 2. Please allow slight dimension difference due to different manual measurement.

Sours: https://shopee.com.br/Mini-DisplayPort-DP-para-conversor-de-adaptador-de-cabo-DVI-D-1m-i.360919808.6595865689
  1. Progesterone davis pdf
  2. Truck bulkhead seal
  3. Route 125 vapors

DVI - Digital Visual Interface


The push is on to make displays digital, whether they’re legacy CRTs (Cathode Ray Tubes) or newer LCDs (Liquid Crystal Displays)—because a digital monitor provides both excellent picture quality and higher transfer bandwidths.


Three main types of DVI's

There are three main types of digital video interfaces: P&D, DFP, and DVI. P&D (Plug & Display, also known as EVC), the earliest of these technologies, supports both digital and analogue RGB connections and is now used primarily on projectors. DFP ( Digital Flat-Panel Port) was the first digital-only connector on displays and graphics cards; it’s being phased out.


There are several types of connectors: DVI-D, DVI-I, DVI-A, DFP, and EVC.

  • DVI-D is a digital-only connector for use between a digital video source and monitors. DVI-D eliminates analog conversion and improves the display. It can be used when one or both connections are DVI-D.
  • DVI-A (analog) is used to carry a DVI signal from a computer to an analog VGA device, such as a display. If one or both of your connections are DVI-A, use this cable. If one connection is DVI and the other is VGA HD15, you need a cable or adapter with both connectors.
  • DVI-I (integrated) supports both digital and analog RGB connections. It can transmit either a digital-to-digital signals or an analog-to-analog signal. It is used by some manufacturers on products instead of separate analog and digital connectors. If both connectors are DVI-I, you can use any DVI cable, but a DVI-I is recommended.
  • DFP (Digital Flat Panel) was an early digital-only connector used on some displays.
  • EVC (also known as P&D, for Plug & Display), another older connector, handles digital and analog connections.

TMDS

All these standards are based on transition-minimised differential signalling (TMDS). In a typical single-line digital signal, voltage is raised to a high level and decreased to a low level to create transitions that convey data. TMDS uses a pair of signal wires to minimise the number of transitions needed to transfer data. When one wire goes to a high-voltage state, the other goes to a low-voltage state. This balance increases the data-transfer rate and improves accuracy.


Learn more:
HDMI - The digital interface to combine HD video, multichannel audio and more.

Sours: https://www.blackbox.com.br/pt-br/page/25532/Recursos/Suporte-Tecnico/black-box-explica/Interface-standards/DVI-Digital-Visual-Interface
Cabo DVI para monitores e placas de vídeo conheça os tipos e diferenças cuidado na hora da compra!

CABO DVI DUAL LINK 3,0M

CABO DVI DUAL LINK 3,0M
  • CABO DVI DUAL LINK 3,0M

BACHMANN
025.918017

Delivery in 2 to 3 weeks time

Warning: Last items in stock!

Availability date:

More info

Name: CABLE DVI DUAL LINK 3,0M

Reviews

30 other products in the same category:

  • WIELAND MULTIPLO 1 x input , 2 x output (2) | Blac
    WIELAND MULTIPLO 1 x input , 2 x output (2) |...

    8,90€

  • LOOP IN BLACK
    LOOP IN BLACK

    44,40€

  • LOOP IN BLACK
    LOOP IN BLACK

    357,10€

  • PROLONG. 3M 3G1,5 HEMBRA WIELAND/UK
    PROLONG. 3M 3G1,5 HEMBRA WIELAND/UK

    17,20€

  • DESK - GANCHOS FIXAÇAO 15MM
    DESK - GANCHOS FIXAÇAO 15MM

    2,70€

  • TWIST PRETO 2x UTE + 2m CABO + FICHA
    TWIST PRETO 2x UTE + 2m CABO + FICHA

    111,10€

  • ALLUM CABLE GLAND 80mmØ
    ALLUM CABLE GLAND 80mmØ

    16,10€

  • BLACK CABLE GLAND 80mmØ RAL9005
    BLACK CABLE GLAND 80mmØ RAL9005

    16,10€

  • INOX CABLE GLAND 80mmØ
    INOX CABLE GLAND 80mmØ

    16,10€

  • WHITE CABLE GLAND 80mmØ RAL9016
    WHITE CABLE GLAND 80mmØ RAL9016

    16,10€

  • MODULO PARA MARCO KEYSTONE VACIO
    MODULO PARA MARCO KEYSTONE VACIO

    1,20€

  • HDMI KEYSTONE
    HDMI KEYSTONE

    25,50€

  • COVER KAPSA
    COVER KAPSA

    36,90€

  • TWIST 2x SCHUKO + 2M CABLE + FICHA (MATE)
    TWIST 2x SCHUKO + 2M CABLE + FICHA (MATE)

    70,60€

  • TWIST 1x SCHUKO + 2x KEYSTONE (AÇO INOX)
    TWIST 1x SCHUKO + 2x KEYSTONE (AÇO INOX)

    69,00€

  • SET OF 5 COLOR RINGS FOR PIX CUSTOM
    SET OF 5 COLOR RINGS FOR PIX CUSTOM

    10,40€

  • Custom module 2x USB CHARGER 5V DC max.2,4A
    Custom module 2x USB CHARGER 5V DC max.2,4A

    36,00€

  • COVER KAPSA WHITE
    COVER KAPSA WHITE

    43,80€

  • WIELAND MULTIPLO 1 x input , 2 x output (2) | Blac
    WIELAND MULTIPLO 1 x input , 2 x output (2) |...

    9,00€

  • CABLE BRIDGE 1M
    CABLE BRIDGE 1M

    76,80€

  • MARCO 2x KEYSTONE METALICO
    MARCO 2x KEYSTONE METALICO

    10,00€

  • PROLONG 2M 3G1,5 HEMBRA WIELANDUK
    PROLONG 2M 3G1,5 HEMBRA WIELANDUK

    11,80€

  • MODULE 1XVGA + 1XSTEREO 3,5MM + MEDIANET SWITCH
    MODULE 1XVGA + 1XSTEREO 3,5MM + MEDIANET SWITCH

    90,10€

  • KAPSA XS LID STAINLESS STEEL LOOK
    KAPSA XS LID STAINLESS STEEL LOOK

    33,90€

  • PIX LID SET STAINLESS STEEL LOOK
    PIX LID SET STAINLESS STEEL LOOK

    17,00€

  • KAPSA XXS LID STAINLESS STEEL LOOK
    KAPSA XXS LID STAINLESS STEEL LOOK

    28,30€

  • TWIST 2x UTE (FRENCH)+ 2m CABO + FICHA
    TWIST 2x UTE (FRENCH)+ 2m CABO + FICHA

    70,60€

  • COVER KAPSA WHITE
    COVER KAPSA WHITE

    36,90€

  • MARCO VGA+ STEREO 3,5mm + HDMI
    MARCO VGA+ STEREO 3,5mm + HDMI

    67,80€

  • MODULO HDMI + BOTAO
    MODULO HDMI + BOTAO

    91,20€

Sours: https://www.duarteneves.com/en/acessorios-p-costumizacao/5433-cabo-dvi-dual-link-30m-4016514032808.html

Dvi cabo

Digital Visual Interface

Standard for transmitting digital video to a display

"DVI" redirects here. For other uses, see DVI (disambiguation).

DVI.pngDvi-cable.jpg

A male DVI-D (single link) connector

Type Digital computer video connector
DesignerDigital Display Working Group
Designed April 1999; 22 years ago (1999-04)
Produced 1999–present
SupersededVGA connector
Superseded byDisplayPort, HDMI
Hot pluggable Yes
External Yes
Video signal Digital video stream:
Single link: 1920 × 1200 (WUXGA) @ 60 Hz
Dual link: 2560 × 1600 (WQXGA) @ 60 Hz
Analog video stream: 1920 × 1200 (WUXGA) @ 60 Hz
Pins 29
Bitrate (Single link) 3.96 Gbit/s
(Dual link) 7.92 Gbit/s
Max. devices 1
Protocol 3 × transition minimized differential signaling data and clock
DVI Connector Pinout.svg
A female DVI-I socket from the front
DVI pinout.svg
Color coded (click to read text)
Pin 1TMDS data 2− Digital red− (link 1)
Pin 2 TMDS data 2+ Digital red+ (link 1)
Pin 3 TMDS data 2/4 shield
Pin 4 TMDS data 4− Digital green− (link 2)
Pin 5 TMDS data 4+ Digital green+ (link 2)
Pin 6 DDC clock
Pin 7 DDC data
Pin 8 Analog vertical sync
Pin 9 TMDS data 1− Digital green− (link 1)
Pin 10 TMDS data 1+ Digital green+ (link 1)
Pin 11 TMDS data 1/3 shield
Pin 12 TMDS data 3− Digital blue− (link 2)
Pin 13 TMDS data 3+ Digital blue+ (link 2)
Pin 14 +5 V Power for monitor when in standby
Pin 15 Ground Return for pin 14 and analog sync
Pin 16 Hot plug detect
Pin 17 TMDS data 0− Digital blue− (link 1) and digital sync
Pin 18 TMDS data 0+ Digital blue+ (link 1) and digital sync
Pin 19 TMDS data 0/5 shield
Pin 20 TMDS data 5− Digital red− (link 2)
Pin 21 TMDS data 5+ Digital red+ (link 2)
Pin 22 TMDS clock shield
Pin 23 TMDS clock+ Digital clock+ (links 1 and 2)
Pin 24 TMDS clock− Digital clock− (links 1 and 2)
C1 Analog red  
C2 Analog green  
C3 Analog blue  
C4 Analog horizontal sync  
C5 Analog ground Return for R, G, and B signals

Digital Visual Interface (DVI) is a video display interface developed by the Digital Display Working Group (DDWG). The digital interface is used to connect a video source, such as a video display controller, to a display device, such as a computer monitor. It was developed with the intention of creating an industry standard for the transfer of digital video content.

This interface is designed to transmit uncompressed digital video and can be configured to support multiple modes such as DVI-A (analog only), DVI-D (digital only) or DVI-I (digital and analog). Featuring support for analog connections, the DVI specification is compatible with the VGA interface.[1] This compatibility, along with other advantages, led to its widespread acceptance over competing digital display standards Plug and Display (P&D) and Digital Flat Panel (DFP).[2] Although DVI is predominantly associated with computers, it is sometimes used in other consumer electronics such as television sets and DVD players.

Technical overview[edit]

DVI's digital video transmission format is based on panelLink, a serial format developed by Silicon Image that utilizes a high-speed serial link called transition minimized differential signaling (TMDS). Like modern analog VGA connectors, the DVI connector includes pins for the display data channel (DDC). A newer version of DDC called DDC2 allows the graphics adapter to read the monitor's extended display identification data (EDID). If a display supports both analog and digital signals in one DVI-I input, each input method can host a distinct EDID. Since the DDC can only support one EDID, this can be a problem if both the digital and analog inputs in the DVI-I port detect activity. It is up to the display to choose which EDID to send.

When a source and display are connected, the source first queries the display's capabilities by reading the monitor EDID block over an I²C link. The EDID block contains the display's identification, color characteristics (such as gamma value), and table of supported video modes. The table can designate a preferred mode or native resolution. Each mode is a set of CRT timing values that define the duration and frequency of the horizontal/vertical sync, the positioning of the active display area, the horizontal resolution, vertical resolution, and refresh rate.

For backward compatibility with displays using analog VGA signals, some of the contacts in the DVI connector carry the analog VGA signals. To ensure a basic level of interoperability, DVI compliant devices are required to support one baseline video mode, "low pixel format" (640 × 480 at 60 Hz). Digitally encoded video pixel data is transported using multiple TMDS links. At the electrical level, these links are highly resistant to electrical noise and other forms of analog distortion.

A single link DVI connection consists of four TMDS links; each link transmits data from the source to the device over one twisted pair. Three of the links represent the RGB components (red, green, and blue) of the video signal for a total of 24 bits per pixel. The fourth link carries the pixel clock. The binary data is encoded using 8b10b encoding. DVI does not use packetization, but rather transmits the pixel data as if it were a rasterized analog video signal. As such, the complete frame is drawn during each vertical refresh period. The full active area of each frame is always transmitted without compression. Video modes typically use horizontal and vertical refresh timings that are compatible with CRT displays, though this is not a requirement. In single-link mode, the maximum pixel clock frequency is 165 MHz that supports a maximum resolution of 2.75 megapixels (including blanking interval) at 60 Hz refresh. For practical purposes, this allows a maximum 16:10 screen resolution of 1920 × 1200 at 60 Hz.

To support higher-resolution display devices, the DVI specification contains a provision for dual link. Dual-link DVI doubles the number of TMDS pairs, effectively doubling the video bandwidth. As a result, higher resolutions up to 2560 × 1600 are supported at 60 Hz.

Cable length[edit]

The maximum length recommended for DVI cables is not included in the specification, since it is dependent on the pixel clock frequency. In general, cable lengths up to 4.5 metres (15 ft) will work for display resolutions up to 1920 × 1200. Longer cables up to 15 metres (49 ft) in length can be used with display resolutions 1280 × 1024 or lower. For greater distances, the use of a DVI booster—a signal repeater which may use an external power supply—is recommended to help mitigate signal degradation.

Connector[edit]

See also: Mini-DVI and Micro-DVI

Female DVI connector pins (view of plug)
Female M1-DA connector pins (view of plug)
Digital Visual Interface - DVI.jpg
DVI port on a Sony HD CRT tv that complies with EIA-861
DVI output connector on a computer

The DVI connector on a device is given one of three names, depending on which signals it implements:

  • DVI-I (integrated, combines digital and analog in the same connector; digital may be single or dual link)
  • DVI-D (digital only, single link or dual link)
  • DVI-A (analog only)

Most DVI connector types—the exception is DVI-A—have pins that pass digital video signals. These come in two varieties: single link and dual link. Single link DVI employs a single 165 MHz transmitter that supports resolutions up to 1920 × 1200 at 60 Hz. Dual link DVI adds six pins, at the center of the connector, for a second transmitter increasing the bandwidth and supporting resolutions up to 2560 × 1600 at 60 Hz.[3] A connector with these additional pins is sometimes referred to as DVI-DL (dual link). Dual link should not be confused with dual display (also known as dual head), which is a configuration consisting of a single computer connected to two monitors, sometimes using a DMS-59 connector for two single link DVI connections.

In addition to digital, some DVI connectors also have pins that pass an analog signal, which can be used to connect an analog monitor. The analog pins are the four that surround the flat blade on a DVI-I or DVI-A connector. A VGA monitor, for example, can be connected to a video source with DVI-I through the use of a passive adapter. Since the analog pins are directly compatible with VGA signaling, passive adapters are simple and cheap to produce, providing a cost-effective solution to support VGA on DVI. The long flat pin on a DVI-I connector is wider than the same pin on a DVI-D connector, so even if the four analog pins were manually removed, it still wouldn't be possible to connect a male DVI-I to a female DVI-D. It is possible, however, to join a male DVI-D connector with a female DVI-I connector.[4]

DVI is the only widespread video standard that includes analog and digital transmission in the same connector.[5] Competing standards are exclusively digital: these include a system using low-voltage differential signaling (LVDS), known by its proprietary names FPD-Link (flat-panel display) and FLATLINK; and its successors, the LVDS Display Interface (LDI) and OpenLDI.

Some DVD players, HDTV sets, and video projectors have DVI connectors that transmit an encrypted signal for copy protection using the High-bandwidth Digital Content Protection (HDCP) protocol. Computers can be connected to HDTV sets over DVI, but the graphics card must support HDCP to play content protected by digital rights management (DRM).

Specifications[edit]

A passive DVI-to-VGA adapter. This adapter will notwork with a DVI-D output. It requires a DVI-I or DVI-A output to get the analog signal to a VGA input (even if the adapter looks like a DVI-D). A more expensive active adapter (or converter) is required to connect DVI-D to VGA.

Digital[edit]

  • Minimum clock frequency: 25.175 MHz
  • Single link maximum data rate including 8b/10b overhead is 4.95 Gbit/s @ 165 MHz. With the 8b/10b overhead subtracted, the maximum data rate is 3.96 Gbit/s.
  • Dual link maximum data rate is twice that of single link. Including 8b/10b overhead, the maximum data rate is 9.90 Gbit/s @ 165 MHz. With the 8b/10b overhead subtracted, the maximum data rate is 7.92 Gbit/s.
  • Pixels per clock cycle:
    • 1 (single link at 24 bits or less per pixel, and dual link at between 25 and 48 bits inclusively per pixel) or
    • 2 (dual link at 24 bits or less per pixel)
  • Bits per pixel:
    • 24 bits per pixel support is mandatory in all resolutions supported.
    • Less than 24 bits per pixel is optional.
    • Up to 48 bits per pixel are supported in dual link DVI, and is optional. If a mode greater than 24 bits per pixel is desired, the least significant bits are sent on the second link.
  • Example display modes (single link):
    • SXGA (1280 × 1024) @ 85 Hz with GTF blanking (159 MHz)
    • HDTV (1920 × 1080) @ 60 Hz with CVT-RB blanking (139 MHz)
    • UXGA (1600 × 1200) @ 60 Hz with GTF blanking (161 MHz)
    • WUXGA (1920 × 1200) @ 60 Hz with CVT-RB blanking (154 MHz)
    • WQXGA (2560 × 1600) @ 30 Hz with CVT-RB blanking (132 MHz)
  • Example display modes (dual link):
    • QXGA (2048 × 1536) @ 72 Hz with CVT blanking (2 × 163 MHz)
    • HDTV (1920 × 1080) @ 120 Hz with CVT-RB blanking (2 × 143 MHz)
    • WUXGA (1920 × 1200) @ 120 Hz with CVT-RB blanking (2 × 154 MHz)
    • WQXGA (2560 × 1600) @ 60 Hz with CVT-RB blanking (2 × 135 MHz)
    • WQUXGA (3840 × 2400) @ 30 Hz with CVT-RB blanking (2 × 146 MHz)

Generalized Timing Formula (GTF) is a VESA standard which can easily be calculated with the Linux gtf utility. Coordinated Video Timings-Reduced Blanking (CVT-RB) is a VESA standard which offers reduced horizontal and vertical blanking for non-CRT based displays.[6]

Digital data encoding[edit]

One of the purposes of DVI stream encoding is to provide a DC-balanced output link that reduces decoding errors. This goal is achieved by using 10-bit symbols for 8-bit or less characters and using the extra bits for the DC balancing.

Like other ways of transmitting video, there are two different regions: the active region, where pixel data is sent, and the control region, where synchronization signals are sent. The active region is encoded using transition-minimized differential signaling, where the control region is encoded with a fixed 8b/10b encoding. As the two schemes yield different 10-bit symbols, a receiver can fully differentiate between active and control regions.

When DVI was designed, most computer monitors were still of the cathode ray tube type that require analog video synchronization signals. The timing of the digital synchronization signals matches the equivalent analog ones, making the process of transforming DVI to and from an analog signal a process that does not require extra (high-speed) memory, expensive at the time.

HDCP is an extra layer that transforms the 10-bit symbols before sending through the link. Only after correct authorization can the receiver undo the HDCP encryption. Control regions are not encrypted in order to let the receiver know when the active region starts.

Clock and data relationship[edit]

The DVI data channel operates at a bit-rate that is 10 times the frequency of the clock signal. In other words, in each DVI clock period there is a 10-bit symbol per channel. The set of three 10-bit symbols represents one complete pixel in single link mode and can represent either one or two complete pixels as a set of six 10-bit symbols in dual link mode.

DVI links provide differential pairs for data and for the clock. The specification document allows the data and the clock to not be aligned. However, as the ratio between clock and bit rate is fixed at 1:10, the unknown alignment is kept over time. The receiver must recover the bits on the stream using any of the techniques of clock/data recovery and find then the correct symbol boundary. The DVI specification allows the input clock to vary between 25 MHz and 165 MHz. This 1:6.6 ratio can make pixel recovery difficult, as phase-locked loops, if used, need to work over a large frequency range. One benefit of DVI over other links is that it is relatively straightforward to transform the signal from the digital domain into the analog domain using a video DAC, as both clock and synchronization signals are sent over the link. Fixed frequency links, like DisplayPort, need to reconstruct the clock from the data sent over the link.

Display power management[edit]

The DVI specification includes signaling for reducing power consumption. Similar to the analog VESA display power management signaling (DPMS) standard, a connected device can turn a monitor off when the connected device is powered down, or programmatically if the display controller of the device supports it. Devices with this capability can also attain Energy Star certification.

Analog[edit]

The analog section of the DVI specification document is brief and points to other specifications like VESA VSIS[7] for electrical characteristics and GTFS for timing information. The idea of the analog link is to keep compatibility with the previous VGA cables and connectors. HSync, Vsync and three video channels are available in both VGA and DVI connectors and are electrically compatible. Auxiliary links like DDC are also available. A passive adapter can be used in order to carry the analog signals between the two connectors.

DVI and HDMI compatibility[edit]

HDMI is a newer digital audio/video interface developed and promoted by the consumer electronics industry. DVI and HDMI have the same electrical specifications for their TMDS and VESA/DDC links. However HDMI and DVI differ in several key ways.

  • HDMI lacks VGA compatibility and does not include analog signals.
  • DVI is limited to the RGB color model while HDMI also supports YCbCr 4:4:4 and YCbCr 4:2:2 color spaces which are generally not used for computer graphics.
  • In addition to digital video, HDMI supports the transport of packets used for digital audio.
  • HDMI sources differentiate between legacy DVI displays and HDMI-capable displays by reading the display's EDID block.

To promote interoperability between DVI-D and HDMI devices, HDMI source components and displays support DVI-D signalling. For example, an HDMI display can be driven by a DVI-D source because HDMI and DVI-D both define an overlapping minimum set of supported resolutions and frame buffer formats.

Some DVI-D sources use non-standard extensions to output HDMI signals including audio (e.g. ATI 3000-series and NVIDIA GTX 200-series).[8] Some multimedia displays use a DVI to HDMI adapter to input the HDMI signal with audio. Exact capabilities vary by video card specifications.

In the reverse scenario, a DVI display that lacks optional support for HDCP might be unable to display protected content even though it is otherwise compatible with the HDMI source. Features specific to HDMI such as remote control, audio transport, xvYCC and deep color are not usable in devices that support only DVI signals. HDCP compatibility between source and destination devices is subject to manufacturer specifications for each device.

Proposed successors[edit]

In December 2010, Intel, AMD, and several computer and display manufacturers announced they would stop supporting DVI-I, VGA and LVDS-technologies from 2013/2015, and instead speed up adoption of DisplayPort and HDMI.[9][10] They also stated: "Legacy interfaces such as VGA, DVI and LVDS have not kept pace, and newer standards such as DisplayPort and HDMI clearly provide the best connectivity options moving forward. In our opinion, DisplayPort 1.2 is the future interface for PC monitors, along with HDMI 1.4a for TV connectivity".

See also[edit]

References[edit]

  1. ^"Digital Visual Interface adoption accelerates as industry prepares for next wave of DVI-compliant products". DDWG, copy preserved by Internet Archive. February 16, 2000. Archived from the original on 28 August 2007. Retrieved 29 March 2012.CS1 maint: bot: original URL status unknown (link)
  2. ^Eiden, Hermann (July 7, 1999). "TFT Guide Part 3 - Digital Interfaces". TomsHardware.com. Retrieved 29 March 2012.
  3. ^Walton, Jarred (March 2, 2007). "Dell 2407WFP and 3007WFP LCD Comparison". AnandTech. Retrieved November 7, 2013.
  4. ^Docter, Quentin; Dulaney, Emmett; Skandier, Toby (2012). CompTIA A+ Complete Deluxe Study Guide: Exams 220-801 and 220-802. Indianapolis, Indiana: John Wiley & Sons, Inc. ISBN .
  5. ^Kruegle, Herman (2006). "8". CCTV Surveillance: Analog and Digital Video Practices And Technology. Butterworth-Heinemann. p. 268. ISBN .
  6. ^"Advanced Timing and CEA/EIA-861B Timings". NVIDIA. Retrieved 2008-06-18.
  7. ^Video Signal Standard (VSIS) Version 1, Rev. 2, available for purchuase at http://www.vesa.org/
  8. ^"HDMI Specification 1.3a Appendix C"(PDF). HDMI Licensing, LLC. 2006-11-10. Retrieved 2009-11-18.
  9. ^Intel Newsrom – Leading PC Companies Move to All Digital Display Technology, Phasing out Analog (8. December 2010)
  10. ^"HDMI versions". 2017-01-17. Wednesday, 1 February 2017

Further reading[edit]

Sours: https://en.wikipedia.org/wiki/Digital_Visual_Interface
QUAL O MELHOR CABO PRA JOGAR NO PC?! DVI VGA HDMI DISPLAY PORT

.

Similar news:

.



588 589 590 591 592